вівторок, 31 березня 2020 р.

Об’єми тіл

Тіло називається простим, якщо його можна розбити на скінченну кількість трикутних пірамід.
Для простих тіл об’єм — це додатна величина, числове значення якої має такі властивості:

1. Рівні тіла мають рівні об’єми.
2. Якщо тіло розбито на частини, які є простими тілами, то об’єм цього тіла дорівнює сумі об’ємів його частин.
3. Об’єм куба, ребро якого дорівнює одиниці довжини, дорівнює одиниці.

Об’єми многогранників

Об’єм будь-якої призми дорівнює добутку площі основи та висоти.
.
На рисунках наведені приклади призм із різними основами.

Для прямокутного паралелепіпеда отримаємо , де a, b, c — його виміри.
Для куба , де a — довжина ребра.
Для похилої призми (рисунок нижче зліва) об’єм можна обчислити як добуток площі перпендикулярного перерізу та довжини бічного ребра: .
Об’єм будь-якої піраміди (рисунок справа) дорівнює третині добутку площі її основи та висоти: .

Об’єм зрізаної піраміди (див. рисунок) дорівнює , де H — висота,  — площа нижньої основи,  — площа верхньої основи.

Об’єми подібних тіл відносяться як куби їх відповідних лінійних розмірів.

Об’єми круглих тіл

Об’єм циліндра (див. рисунок) дорівнює добутку площі його основи та висоти.

.

Об’єм конуса (див. рисунок) дорівнює одній третині добутку площі його основи та висоти.

.
Об’єм зрізаного конуса (див. рисунок):
.

Об’єм кулі

На рисунку зображено кулю, кульовий сегмент і кульовий сектор.
Об’єм кулі:
, де R — радіус кулі.
Об’єм кульового сегмента:
, де H — висота кульового сегмента,
R — радіус кулі.
Об’єм кульового сектора:
, де R — радіус кулі, H — висота відповідного кульового сегмента.
Іноді треба знайти об’єм або площину поверхні тіла обертання. Щоб правильно уявити собі тіло, яке утвориться при обертанні деякого многокутника навколо деякої прямої, корисно розуміти, що відбувається в таких простих випадках.
1. Відрізок обертається навколо осі, на якій лежить один із його кінців (див. рисунок нижче зліва).
l — пряма. Проведемо . Отже, точка  є проекцією B на пряму l. Відрізок AB, обертаючись навколо осі, утворює бічну поверхню конуса з вершиною A, висотою  і радіусом основи .
2. Відрізок обертається навколо осі, якій він є паралельним (див. рисунок нижче справа).
Спроектуємо точки A і B на вісь l.
Дістанемо точки  і .
Очевидно, що при обертанні AB навколо l дістанемо бічну поверхню прямого кругового циліндра, у якого AB — твірна, вісь — пряма l, радіус основи — .

3. Відрізок обертається навколо осі (див. рисунок), він не є їй паралельним і лежить з нею в одній площині, не перетинаючи осі.
Нехай точки  і  — проекції точок A і B на вісь l відповідно.

При обертанні AB навколо l дістанемо бічну поверхню зрізаного конуса, у якого AB — твірна,  — центр верхньої основи,  — центр нижньої основи,  — радіус верхньої основи,  — радіус нижньої основи.
Якщо навколо осі обертається який-небудь многокутник, треба спроектувати на вісь обертання всі вершини многокутника й розібрати, які фігури утворюють усі його сторони при обертанні.

Немає коментарів:

Дописати коментар